DRIVING THE FUTURE

KUS Group

. . .

Dongguan ZhengYang Elec. Mech. Ltd. (HQ)

.

No. 1, Donghuan ^{3rd.} Street, Huangjiang, Dongguan, Guangdong, China. Tel: +86-769-8353 3295 Fax: +86-769-8366 9597 E-mail: info@kusauto.com

KUS USA, Inc.

Tel: +1.954.463.1075 Fax: +1.954-463-1270 E-mail: sales@kus-usa.com

KUSAUTO Europe B.V. Tel: +44-7785 782887 E-mail: europe@kusauto.com

KUSAUTO India Private Limited Tel: +91-98419 60646 E-mail: india@kusauto.com

www.kus-usa.com www.kusauto.com/en

DRIVING Н Ε FUTURE

ADAS Products & New Energy Vehicle Products Catalog

ADVANCED EQUIPMENT

Advanced equipment and technology ensure that the product meets customers expectations both in quality and performance.

R&D ABILITY

KUS R&D group includes mor than 600 individuals including more than 100 specializing in intelligent driving. KUS introduces the concept of international cooperation and R&D testing with well-known manufacturers to provide optimized solutions.

19万姓家

省级企业技术中心

CARREN STAR LOT

US has won hundreds of wards from manufacturers in provincial famous trademarks nd multiplication enterprises.

CNAS IATF16949 ISO26262 ISO14001 CE PED+AD2000

KUS Group, founded in 1984, is a well-known supplier of automotive after-treatment parts with more than 30 years of experience concentrated in level sensing technology. We are a high-tech enterprise integrating R&D, production, and sales. As a global operating company, with nearly 5,000 employees, KUS Group has nine branches spreading across the world in the United States, Europe, India, and China.

77GHz FCW Millimeter Wave Radar

東米波雷达

LONG Long range sensing and detection

. . .

••••

STRONG Strong penetration, weather proof

fillion -

ACCURATE Small and compact, high recognition accuracy

Product Specific	ations				
Model	KMR	2-G1	KLR-G1		
Appearance					
Туре	MRR	SRR	MRR	SRR	
Operating Frequency Range	76GHz-	77Ghz	76GHz	-77Ghz	
Chip Platform	TI AWF	R 1843	NXP Dolphin S32R274		
Operating Mode	FMC	CW	FMCW		
EIRP	< 370	dBm	≤35dBm		
Operating Voltage	8V~3	36 V	8V~32V		
Power Consumption	4\	N	4	W	
Operation Temp.	-40°C~+85°C	-40°F~+185°F	-40°C~+85°C	-40°F~+185°F	
Storage Temp.	-40°C~+95°C -40°F~+203°F		-40°C~+125°C -40°F~+257°F		
Protection Rating	IP6K9K	/IP6K7	ІР6К9К		
Detection Distance Range	0.5m~175m	0.5 m~60m	0.8m~175m	0.35m~70m	
Relative Velocity Range	- 400km/h ·	- +200km/h	-200km/h~+100km/h		
Distance Accuracy	±0.6m	±0.4m	±0.2m	±0.1m	
Range Resolution	<0.78m	< 0.5m	0.8m	0.35m	
Speed Accuracy	±0.5	m/s	±0.2m/s	±0.1m/s	
Speed Resolution	0.97m/s 0.47m/s		0.14m/s		
Angle Accuracy	±1°		±0.3°@±9°	±0.6°@0°~±2.0°@±45°	
FOV(H)	±4° (175 m)	±45° (60 m)	±9°	±45°	
Update Rate	50	ms	≤50ms		
Tracking Object	6.	4	64,3	2,16	

AEB

ACC

• • • • • •

••••

....

• •

. .

.

••••

Quality Certification

ISO-26262 ISO-16750 ISO-7637 CISPR 25 vscc

77GHz BSD Millimeter Wave Radar ksr-g2/ksr-g1

BSD

LCA

••••

....

ACCURATE Small and compact, high recognition accuracy

STABLE

Stable measurement of distance, speed and angle

STRONG Strong penetration, weather proof

Product Specifications				
Model	KSR-G2	KSR-G1		
Appearance				
Chip Platform	TI AWR1642	TI IWR1642		
Operating Voltage	12V/24V	12V/24V		
Power Consumption	2.4W	1.92W		
Operation Temp.	-40°C~+85°C -40°F~+185°F	-40°C-+85°C - 40°F-+185°F		
Storage Temp.	-40°C~+95°C -40°F-+203°F	-40°C~+90°C -40°F~+194°F		
Protection Rating	IP67	IP67		
Operating Frequency Range	76GHz-77GHz	76GHz-77GHz		
Operating Mode	FMCW	FMCW		
EIRP	24dBm	12dBm		
Detection Distance Range-BSD	3m	5 m		
Detection Distance Range-LCA	75m	25m		
Detection Distance Range-RCTA	20 m	15m		
Relative Velocity Range	-90km/h~+90km/h	-5km/h~+70km/h		
Distance Accuracy	±0.5m	±1m		
Distance Accuracy	0.5m	0.37m		
Range Resolution	±0.5m/s	±0.28m/s		
Speed Accuracy	0.5m/s	0.28m/s		
Angle Accuracy	±1.5°	±1.5°		
FOV(H)	110°	100°		
Update Rate	50ms	100ms		
Tracking Object	32	32		

• •

. .

••••

••••

Monocular Camera (Original Equipment)

- High-precision perceptual algorithm
- Working ability under various lighting, road, and weather conditions

- Information interconnection
- Professional car image sensor compliance with vehicle AEC-Q100

	KC-G2
	CV25
	OV10640
	>115dB
	1280×720
	Rolling shutter
	52°
	-40°C~+85°C -40°F~+185°F
	IP54
i0m	Front car 1m~100m/Pedestrian1m~60m

DRIVING T H E FUTURE

Mounted on the bottom corner of the windshield, EyeWatch display is used for visual alarms.

Ð

Reliable Technology, Trust Worthy

More than 20,000,000 vehicles around the world are equipped with Mobileye technology, including more than 300 new models from leading global manufacturers. Our rear-mounted warning system can be installed on any model, which means you can enjoy the safety benefits of Mobileye technology without having to compromise.

Improve Driving Skill

The Mobileye system integrates fleet management from multiple suppliers allowing you to receive data on the driver's behavior thus improving the driving behavior of the driver.

Mounted on the inside of the windshield, the product includes a camera, speaker, and EyeQRchip.

Get Feasibility Data

On average, drivers get use to the equipped system alarm and learn to predict it after three or four weeks. Drivers will maintain a safe interval or brake in advance to avoid the alarm emitted by the system.

Reduce Implicit Cost in Operations

Car accidents can lead to a dramatic increase in implicit costs, including the cost of part replacement, vehicle failures, delayed delivery, and increased premiums. Mobileye alarm can help drivers avoid or reduce collisions, wear, and fuel consumption.

Vehicle Camera Products

Spe	Specifications						
Item	Product Model	Product Description and Application	Image Resolution	Voltage	Horizontal View Angle	Srializer	Picture
1	kuscam300	Smart Camera (RV,LDWS,MOD)	640×480 (CVBS)	12V	180°	х	G D
2	kuscam152	Aerial-View Camera (AVM,RV)	640×480 (CVBS)	12V	189°	Х	5
3	kuscam121	Side-View Camera (BSD,ODA)	640×480 (CVBS)	12V	84.5°	х	

Specifications

Item	Product Model	Product Description and Application	Image Resolution	Voltage	Horizontal View Angle	Srializer	Picture
4	kuscam161	Aerial-View Camera (AVM,RV)	1280×960 (HD-TVI)	12V	189°	х	Ó O?
5	kuscam201	Aerial-View Camera (AVM,RV)	1280×720 (LVDS)	6V	180°	TI913	
6	kuscam203	Aerial-View Camera (AVM,RV)	1280×960 (LVDS)	6V	180°	TI913	
7	kuscam204	Aerial-View Camera (AVM,RV)	1280×960 (LVDS)	6V	180°	TI913	
8	kuscam231	Forward-View Camera (ADAS,AD)	1280×720 (LVDS)	6V	53.4°	TI913	
9	kuscam234	Forward-View Camera (ADAS,AD)	1920×1080 (LVDS)	6V	62°	TI953	
10	kuscam236	Forward-View Camera (ADAS,AD)	1280×720 (LVDS)	6V	128°	Max96705	200
11	kuscam250	Cockpit Camera (DMS,LED850nm)	1280×720 (LVDS)	6V	68°	TI913	

Driver Monitoring System

(Original Equipment) KDM-G1

DRIVING T H E FUTURE

.

.

.

• • ••••

.

.

.

.... ••••

...... .

Specifications

	Minimum Value	Typical Values	Μ	
Effective Speed Range	0km/h			
Warning Speed Range	10km/h			
Detectable Head Level Attitude Angle	-45°			
Detectable Head Vertical Attitude Angle	-25°			
Typical Warning Specification	1. With 3s driver has	s eyes closed more th	an 4	
	2. Yawning			
Maximum Duration of Warning		1s		
Alarm Blocking Time		3s		
User Interaction	When the alarm is t	riggered, the system	will	
Make Call Warning	Call time is greater than 2s			
Smoking Warning	Detection of driver'	s cigarette triggers ar	n ali	
Distraction Warning	Within 4s driver has looked around more th			
	Within 4s driver has	s looked down more t	har	

Eye-closed Warning

Make Call Warning

2015 111111 111111

Filter Glasses

Night Environment

.....

Face Identification

Smoking Warning

Data Management

Maximum Value	Remarks
180km/h	
180km/h	Minimum warning speed can be adjusted within a certain range
45°	Zero when the head is vertically facing the camera
25°	Zero when the head is facing the camera horizontally
40%	
	The minimum warning time interval between two adjacent warning
l sound a warning	
larm	
an 80%	
n 80%	

Driver Monitoring System

KDM-G3A

DRIVING ТНЕ FUTURE

.

.

.

.

.

• •

. ••••

DMS is manufactured for long-distance buses/ trucks, carriers, taxis, and passenger cars. DMS works by utilizing built-in 4G to transfer data to a network or terminal that then remotely monitors the status of the driver. DMS is able to combine the output and analysis of alarm data to analyze driving habits and monitor drivers status to reduce the probability of an accident.

Advanced Identification Technology

High Automotive Product Quality

Eye-closed Warning

Make Call Warning

Distraction Warning

Filter Glasses

Night Environment

:::::

Face Identification

Smoking Warning

.

.

.....

• • • • • •

• • • • • • • • • • • • • •

.

.

.

Data Management

Working Diagram

* Manufactured for use in passenger cars and commercial vehicles

Product Specifications

Appearan	ce
Size	72(W)x24.5(H)x16(D)mm

Control	Board	Parameters	
CPU	ARM,	Cortex-A7	
Connection	USB,	UART, RS232	
Working Temp	20°C	C~+70°C-4°F~+172.4°F	

Camera Module Parameters

Resolution & Connection	1080P, VGA
Camera Structure	5P+IR
Focal Length	3.49mm
Aperture	F2.8
LENS	67°
Filming Range	0.2m~0.5m
Relative Illumination	70%
Signal Output	RAW bayer 10bit/8bit

Monocular Camera and DMS Fusion Scheme

DRIVING T H E FUTURE

.

.

.

.

. . . .

• • ••••

.....

.

.

•••••

....

•••••

.

Specifications

Camera Paramete	rs			
	Minimum Value	Typical values	Maximum Value	Remarks
Effective Speed Range	20km/h		180km/h	
Warning Speed Range	60km/h		180km/h	Minimum warning speed can be adjusted
Lane Width Range	2.6m		4.0m	
Ability to Adapt to Corners	250m			Reference value is the radius of driveway curvature
Earliest Warning Line	Before front wheels cross lane line (0.1m)			Can be adjusted
Latest Warning Line	After front wheels cross lane line (0.3m)			
Lane Line Color Recognition	White and yellow			
Lane Line Type Identification	Solid line, double line, dashed line, and dotted line			
Applicable Roads	Highways, expressways, and urban roads (including tunnels)			
Applicable Weather	Day, night, dusk, dawn, fog, haze, rain, and snow		ain, and snow	Rain, snow, and backlight can lead to performance degradation
Maximum Duration of Warning		1s		
Alarm Blocking Time		3s		Minimum alarm time interval between two adjacent alarms
Event Upload Interval		3min		Data card needs to be configured and uploaded over 4G network
User Interaction	When the alarm is triggered, the system will sound a warning			

DMS	Parameters

DMS Parameters					
	Minimum Value	Typical values	Maximum Value	Remarks	
Effective Speed Range	10km/h		180km/h	Minimum warning speed can be adjusted within a certain range	
Detectable Horizontal Angle	-30°		30°	Zero when the head is vertically facing the camera	
Detectable Vertical Angle	-20°		20°	Zero when the head is facing the camera horizontally	
Identifiable State	Fatigue, abnormal posture, yawning, make a call, departure, and smoking		, departure, and smoking		
Applicable Weather	Day, night, dusk, dawn, fog, haze, rain, and snow		in, and snow		
Maximum Duration of Warning		1S			
Alarm Blocking Time		35		Minimum alarm time interval between two adjacent alarms	
Event Upload Interval		3min		Data card needs to be configured and uploaded over 4G network	
User Interaction	When the alarm is triggered, the system will sound a warning		ill sound a warning	Human voice or buzzer alarm can be adjusted	

3D AVM (for Commercial Vehicle)

KAV-G1CV

DRIVING T H E FUTURE

.

3D AVM utilizes 4 to 8 wide-angled cameras mounted around the field of view to collect multi-channel video images that are then used to process a 360-degree aerial view around the vehicle. The central control display allows the driver to view information regarding road conditions thus allowing the driver to easily park the vehicle and reducing the probability of accidents.

3D Multi-Angle

Around View Recording

3D Multi-Angle imaging has a wide field of view, unlimited viewing angles, eliminates blind spots, and automatically switches the perspective through the body signal.

vide Around View Recording supports real-time recording of road and conditions around the car for playback. It features support for a 256G memory card, automatic loop recording, and video playback.

Specifications

3D-360Host Computer				
CPU	NXP I.MX6(ARM Cortex-A9)			
	1.0GHz			
RAM	2×512MB DDR3			
Flash Memory	4GB eMMC			
Operating Voltage	9~36V			
Operating Current	600mA以下(12V)			
Operating Temp.	-30°C~+85°C -22°F~+185°F			
Operating Power	7.2W			
EMC	Meet with ISO 7637			
EMI	Meet with CISPR25-2008 level 3			
EMS	Meet with GB/T 17626.3-2006 level 3			
ESD	Meet with GB/T 19951-2005 level 3			

.

• • • • • • • • • •

Low Speed Motion Detection

Low Speed Motion Detection allows the vehicle, when parked or below 20KM/h, to automatically detect moving objects within range and issue an alarm to indicate to the driver to pay attention to the surrounding road conditions.

8-Channel Video Input

8-Channel Video Input supports 6-way picture panorama stitching up to 22 meters and access to the front/middle door image monitoring simultaneously.

Camera	
Sensor Dimension	1/3 inch
SNR	46.5 dB
Illuminance	13.2 V/lux.sec
Dynamic Range	60.7 dB
Image Format	PAL/NTSC
Resolution	720 × 576
Video Output	CVBS/AHD
Matching Impedance	75 Ω
Protection Rating	IP67
Viewing Angle	180°(Typical)

3D AVM (for Off-highway Vehicle)

KAV-G2CE

••••

Specifications

AVM	
360°Seamless Stitching	Seamless stitching of panoramic fusi
Dual Image Display	Single view and panorama view can
2D/3D Switchable	Front view, rear view, and panorama
Driving Angle Switching	Automatically switches view angle a
	Automatically displays the front view
	Automatically displays the left side v
Recording DVR	Support 4-way camera to record at t
	be set, cycle recording

Camera	
Camera Sensor	ASX340CS
Sensor Dimension	1/3 inch
Illuminance	1 Lux@60IRE
Video Output	CVBS/AHD
Waterproofing Grade	IP67
Standard View	180°(Typical)

Hos	st Compute	r	
CPU		NXP I.MX6	ARM Cortex-A9
Flash	Memory	2×512MB DDF	23
Opera	ating Voltage	9V~36V	
Opera	ating Current	Below 600m	A (12V)
Opera	ating Temp.	-30°C~+85°C	-22°F~+185°F
Opera	ating Power	7.2W	
EMC		Meet with ISC	0 7637
EMI		Meet with CIS	SPR25-2008 level3
EMS		Meet with GB	/T 17626.3-2006 level3
ESD		Meet with GB	/T 19951-2005 level3

ion map

be displayed at the same time

support 2D/3D image switching

according to driving direction

w and the reverse view when moving forward or backward

view and the right view when moving left or right

the same time, support segment storage; video segment storage time can

3D AVM (for Passager Vehicle)

KAV-G3PV

DRIVING ТНЕ FUTURE

"3D AVM is an image-based driving assistance system with more than 4 wide-angled cameras mounted around the surrounding body (front, back, left, and right) of the automobile. 3D AVM works by capturing an image within a few meters of the body and then displays that image from an aerial view to the driver on the interior display. It allows the driver to determine the relative position between itself and the surrounding area as well as obstacles when driving. In addition to the left and right camera, the front glass camera or the DMS camera can be amplified to achieve more functions of ADAS, such as LDW and BSD.

See-Through View

Visual Range 360°AVM Specification

Front Side: Z1: Rear Side: Z2 Z1,Z2≧170cm (depending on models) Left Side: Z3; Right Side: Z4 Z3, Z4≧195cm(depending on models)

Blind Spot Specification

Front Side: +Y1; Rear Side: +Y2 Y1, Y2≤30cm(depending on models) Left Side: +Y3; Right Side: +Y4 Y3, Y4≤5cm(depending on models)

Visual Function

LDW

FCW

DVR

DOA

_	_	_	_	
				L
				L
				L
				Ľ

1	8
/iew	,
	-
	7
al an a	

Product Specifications

Around View	Surround views: 3D and 2D
Implementation	
2D AVM Range	2~2.5m around the vehicle
Display Configuration	single view or dual view
Other Display	1. Front: Alley View/
Configuration	Rear: Corner View
	2. Perimeter Scan
Transparent Chassis	Displays 2D view when car moves
	forward and backward
Optional	BSD. DMS. MOD

Panoramic Camera Specifications

Image Sensing Component	1/4" Color CMOS Sensor
Pixel	>1,000,000 pixels
SNR	≥40dB
Voltage	12V
Min. Illumination	0.5lux@50 IRE
Working Temp.	-40°C~85°C -40°F~+185°F
Resolution	≥600TV Line
Dimension	IP 69K
Size	24(W)×24(H)×24.85(D)mm
Aperture	F2.0
Horizontal View Angle	180° (Typical)
Vertical View Angle	124° (Typical)
Diagonal View Angle	>200°

Auto Parking Assist / Automated Valet Parking

Parking Block Detection

Ground Lock Detection

Specifications

Ambient Illumination	≥5 Lux	
Speed	Parking Space Sea	rching Process≈
	Parking Process≤5	ikm/h
Parking Space Searching Distance	0.3~4.0m	
Parking Space Searching Direction	Can be left and rig	ht at the same I
Axle and Parking Space Angle	≤±15°	
Searchable Parking Space Size (Parallelogram)		Width
	Horizontal Space	4.7m~7.0m
	Vertical Space	2.2m~3.6m
	Oblique Space	2.2m~3.6m
Support Detecting Parking Space Lines	Gridlines Color: W	hite, Yellow, Re
	Gridlines Width: 5	cm~15cm
	Gridlines Length:	≥30cm
Vehicle Positioning Accuracy	≤15cm	
Parking Space	Vertical/Oblique: S	pace Width \geq V
	Horizontal: Space \	Width ≥ Vehicle
Recognizable Obstacle Type	Vehicle, traffic cone,	parking block, g

Space Number Detection

s≤20km/h

time (by utilizing the left and right camera)

Angle Between the Adjacent Sides 90° >45°

ed, and Blue

Vehicle Width +0.6m

le Width +max(0.7m,0.15*vehicle length)

ground lock (stand up and down); other obstacles can be detected, not classified

Visual and Radar Fusion System AEB / FCW / LDW

According to JT/T 1242-2019, Performance Requirements and Test Procedures for Automatic Emergency Braking System of Operating Vehicles, the maximum detection distance of the target vehicle shall be not less than 150m; the maximum detection distance of pedestrians shall be not less than 60m. At present, due to the limitations of its own design, a single sensor cannot meet the accurate detection and tracking of dynamic obstacles in complex environments. The fusion system complements the camera's close-range inspection target information and long-range radar detection distance by integrating the data of the two sensors to extract more accurate information such as obstacle position, speed, and size category to provide ideal data for decision algorithms.

	Visual System	Radar System	Fusion System
			+
Ranging Accuracy	Depends on the distance	Depends on the distance	High-performance positioning under conditions of large viewing angles with full distance
Light and Weather	Outstanding	Little impact	Classification and processing of complex objects
Lane Lines and Road Signs	Applicable	N/A	
Accuracy of Pedestrian Identification	High	Low	Complementary advantages(make up each other)
Detection Accuracy of Relative Position and Distance of Obstacles	Low	High	
Obstacle Classification	Applicable	N/A	
Cost	Low	Average	Cost-effective with flexible choice

Fusion System Framework

-	CAN BUS 2		CAND	
	Relative speed, radar coordinates, obstacle distance, and offset angle	ľ	CAN 2	
	CAN BUS 3		CAN 3	Fusion
	Relative speed, camera coordinates, offset angle, obstacle size and category	ĺ	c, are	Algorithm
Vehicle	CAN BUS 1		CANI	
Imformation	vehicle informations such as vehicle speed, steering wheel directions, and braking force		CANT	
				Safet

Visual and Radar Fusion System Parameters

Obstacle Type	Motor vehi
Weather and Roads Conditions	Applicable than 5m/s. concrete o
Curve Adaptability	≤125m Ra
Detection Range	0.5m~200r The minim The maxim The maxim
Detection Rate	≥96%
Accuracy Rate	≥96%
Lateral Detection Angles of Obstacles at Close Distance	≥52°
Accuracy of Obstacle Identification at Longitudinal Distance	±0.15m
Longitudinal Speed Accuracy of the Vehicle Relative to the Obstacle	±0.3m/s
The Horizontal Detection Distance of the Vehicle	≥3.75m
The Horizontal Detection Distance for Pedestrians	≥5m
Fusion Calculation Parameter Output Cycle	50ms
Functional Safety Level	ASIL B

ECU (ADAS)

icles, non-motor vehicles, and pedestrians

e environment: atmospheric temperature -40 ° - 85 °, ambient wind speed should be less . Applicable road conditions: horizontal, dry, wet, and good adhesion properties of or asphalt pavement.

adius of curvature <125m

۱

num detection distance to the vehicle or pedestrian in front should be no more than 2m. num detection distance for pedestrians should be no less than 60 m. num detection distance for pedestrians should be no less than 60 m.

Combination 3D AVM / DMS / FCW / LDW / BSD

An image-based single image system can only cover a limited area around the car body, instead the driver can expand their field of vision by using the AVM ECU. The AVM ECU works with the AVM, front view, DMS, and BSD camera to form a complete view around the entire vehicle. The technology allows the driver to see whether there are pedestrians, moving objects, non-motor vehicles, or obstacles around the vehicle. A multi-channel integrated lens is used to achieve multiple ADAS functions, and multiple algorithms are integrated into one ECU, thereby reducing costs.

3D AVM(with host computer)

The multi-channel around view cameras show the surroundings of the vehicle on the display

Front View Camera

The forward-looking monocular camera detects and identifies roads ahead, vehicles, and issues a warning of possible collisions and lane departures with no driving awareness

Combination of Function

1, 1110

BSD Camera

Under working conditions, the system automatically triggers an alert to the driver of possible collisions and reduces turning Impact on driving behavior in blind spots

DMS Camera

The facial recognition camera recognizes early warning signs of dangerous driving behaviors such as yawning and smoking

Combination

40-40-40-40

FCW/LDW DMS BSD FCW/LDW+ DMS FCW/LDW+ BSD DMS+BSD FCW/LDW+ DMS+BSD

Vehicle Control Unit

(VCU)

DRIVING ТНЕ FUTURE

Prod	luct	Spe	ecifi	cat	ions

Master Chip	133MHz infineon TriCore 32 bit
Storage	Flash:1.5MB, RAM: 120KB
Working Temp.	-40°C~105°C -40°F~221°F
Working Voltage	8V-32V
Dormancy	≤1mA
Wake Up	Key/Charge/CAN
Shell	Aluminum alloy box structure,
	IP67 protection class
Dimensions	192.4(W)x156.4(H)x42(D)mm
Installation Way	Bolted installation
Connector	AMP 121 Pin connector
Digital Input	20 input, Up-down hardware
	configurable
Frequency of the Input	5 input, 5Hz~1KHz
Analog Input	16 input, 0-5V
Bus Communication	3 high speed CAN, Support
	extended frames, 1 LIN
Adaptable Automobile Mode	EV, PHEV, HEV, REV, 48V

. •••• • • • • • • . . .

Control the Power System Components of the Vehicle

TCU

Engine Management System

Transmission Control Unit

Battery Management System

Motor Control Unit

VCU is the assembly controller of the new energy vehicle power system which is responsible for coordinating the engine, gearbox, drive motor, power battery, accessories and other components to work together. VCU monitors the control functions of the vehicle, to meet the vehicle power, economy, driving requirements, and to ensure the safety of the vehicle.

Hardware Features

- Meets the requirements of ISO16750/7637/11452/10605 automotive electronic environment, reliability, and EMC performance.
- Conforms to ISO26262 standard, functional safety ASIL B level, built-in watchdog, and external security monitoring chip, all output can be disabled.
- 12V and 24V versions support passenger and commercial vehicles.

Software Features

- Software conforms to the AUTOSAR 4.0 architecture and has the ECU and MCU hardware abstraction layer. Integrate CAN, UDS and CCP peer protocol stack, support UDS.
- Universal fault diagnosis, CCP online scrubbing, and calibration.
- Application software adopted in the model develops automatic production code and supported Simulink and Targetlink.

PTC Heating Unit

(PHU)

DRIVING ТНЕ FUTURE

The PTC Coolant Water Heater is used in pure electric, hybrid, and fuel cell vehicles. It acts as a heat source for air conditioning systems. The overall structure of the product consists of an upper shell, radiator (including PTC heating package), main control board, high-pressure connector, low-pressure connector, and upper shell. We can ensure the safe and stable operation of PTC coolant water heater as the power change will not cause interference to the body system.

Product Specifications

1. More reliable installation:

- A. Use X ring seal.
- B. The fastening method of cover plate is pin-type fixing, which makes the fixing more compact.
- 2. The flow channel is designed with wave shape, heating efficiency up to 85%.
- 3. Supports CAN/LIN communication.
- 4. Thermostatic control, multiple control modes: water temperature, wind speed, water quantity, water velocity, and power.

5. Update, remote start.

Available for FCEV SEV PHEV

Product Features

Commercial Vehicle

Maximum Power	7.5KW±10%	5KW±10%
Storage Temp.	-40°C-+125°C -40°C-+257°F	-40°C-+125°C -40°C-+257°F
Operating Temp.	-40°C-+120°C -40°C~+248°F	-40°C-+120°C-40°C-+248°F
Coolant Temp.	-40°C-+90°C -40°C~+194°F	-40°C~+90°C -40°C~+194°F
Protocol	CAN/LIN	CAN/LIN
Nominal Voltage	24V(low-voltage end), 600V(high-voltage end)	12V(low-voltage end), 350V(high-voltage end)
Working Voltage	16V-32V(low-voltage end), 500V-700V(high-voltage end)	9V~16V(low-voltage end), 250V~450V(high-voltage end)
Rated Current	50mA(low-voltage end), 15A(high-voltage end)	50mA(low-voltage end), 15A(high-voltage end)
Insulation Resistance	>50M Q	>50M Q
Level of Protection	IP67	IP67
Dimensions	202(W)x187(H)x68(D)mm	160(W)x141(H)x105(D)mm

For Commercial Vehicles

For Passager Vehicles

Improve performance by heating batteries, motors, and electronic controls.

Provide air heating and heat source for air conditioning system

Passager Vehicle

DRIVING ТНЕ FUTURE

for remote monitoring of new energy positioning, date, and time information. analysis of vehicle operation, and technical data. T-Box supports remote management and control of vehicles through the server.

Product Specifications

Master Chip	Freescale MPC series 32
Working Temp.	-40°C~+85°C -40°F~+185°F
Working Voltage	8V~32V
Bus Communication	3-way high speed CAN,
Local Storage	>32GB,>7days
Long-distance Transportation	Up 5.76Mb/s, down 7.2M
Positional Accuracy	Precision 5m, cold start
Date and Time	Local within 24 hours (±
Long-distance Transportation	Support for remote serv
Long-range Control	Support remote program
Abnormal Work	Upload data > 10 minute
Vehicle Support	New energy 12V passeng

Automobile Information Collection

Remote Analysis

Remote Management Control

-bit

support extended frames

1b/s

120s, hot start 10s

±5s), support server synchronization

ver registration, activation and administration

m writing and vehicle control

es after main power cut off

ger vehicles and 24V commercial vehicles

R&D Team

R&D Team in HQ(Dongguan)

Up to 500 R&D personnel

Our headquarters has established a high performing R&D team with a professional background. The up to 20% of our team members have achieved a master's or doctoral degree. Having the leading innovation ability in software design and algorithm, KUS independently developed radar, monocular camera, 3D AVM, and other projects.

R&D Team in Taiwan

Up to 100 R&D personnel

Our Taiwan R&D team focuses on antenna design, radar signal processing, software system development, and hardware verification. Taiwan has built radar RF chambers and other testing sites to verify radar hardware performance.

R&D Team in Wuhan

Up to 50 R&D personnel

Our Wuhan R&D team is responsible for the visual image collection, visual AI algorithms(LDW,DMS,3D AVM,FCW,BSD). and radar algorithms. Wuhan is committed to creating smarter and more accurate AI algorithms.

Ability/Certificate

Through decades of rapid development and continuous investment, KUS has fostered advanced production processes and equipment with more than 95% of the key auto parts having been self-made. In recent years, KUS has introduced intelligent production lines and built many high-quality electronic processing workshops which continued to maintain leading manufacturing levels. At present, KUS has achieved qualification certifications such as IATF16949, ISO26262, ISO14001, CE, and PED+AD2000.

KUS's laboratory is certified by ISO 17025, which is accredited by CNAS and CNCA and is recognized by OEM's. The process in receiving the accreditation consists of 19 elements and 104 points over a 6-month period. The accreditation allows KUS to be a qualified third party lab issuing independent test reports.

Our Users

